
Before Dr. Blackburn’s research, the “clock” that determines cellular life was a mystery. Shortening of chromosomes, which carry key genetic information, continually occurs naturally over time until the telomeres become too short and the cell dies. She demonstrated that telomerase can “turn back the hands of the clock” by replenishing the chromosomes by “adding DNA back into their ends.”
In more recent experiments with a UCSF psychologist, Dr. Blackburn’s team has shown a direct link between low levels of telomerase and chronic stress that can promote early onset of age-related diseases such as cardiovascular disease and neurodegenerative disorders. Dr. Blackburn and her team are now exploring the potential role that the enzyme could eventually play in neurodegenerative and other age-related disorders. The goal of some current trials is to see whether telomerase can be inhibited in order to slow and perhaps halt the progression of cancer.

Dr. Steitz’ uncovering of the previously mysterious splicing process elucidates the science behind the formation of proteins, essential components of all of our biological processes including the intricate metamorphoses that occur as the immune system and brain develop. Understanding just how splicing occurs is important because it may someday enable scientists to prevent a variety of human genetic diseases. In, fact, many scientists believe that Dr. Steitz’ research will ultimately lead to breakthroughs in diagnosing and treating patients with lupus and other serious autoimmune disorders.They are both clearly well-deserving of the prize.
ETA: Check out GrrlScientist's post for more about Blackburn and Steitz's research.
Tags: Joan Steitz, Elizabeth Blackburn, Albany Medical Center Prize
No comments:
Post a Comment